
Microprocessors and
Microcontrollers

(EE-231)

Main Objectives

• ADC and its interfacing to Microprocessor
• Interrupts

– Basic Interrupt Processing
– Hardware interfacing of Interrupts
– Expansion of Interrupt Structure

• A PLD is used to decode the DAC0830 at I/O port address 20H.
– when an OUT 20H,AL instruction is executed, contents of data

bus connections AD0–AD7 are passed to the converter in the
DAC0830

• The 741 operational amplifier, along with the –12 V zener reference
voltage, causes the full-scale output voltage to equal +12 V.

Connecting the DAC0830 to the Connecting the DAC0830 to the
Microprocessor.

• A PLD is used to decode the DAC0830 at I/O port address 20H.
– when an OUT 20H,AL instruction is executed, contents of data

bus connections AD0–AD7 are passed to the converter in the
DAC0830

• The 741 operational amplifier, along with the –12 V reference
voltage, causes the full-scale output voltage to equal +12 V.

Connecting the DAC0830 to the Connecting the DAC0830 to the
Microprocessor.

A DAC0830 interfaced to the 8086 microprocessor at 8-bit I/O
location 20H.

• A common, low-cost ADC, compatible with a wide range of
microprocessors.
– while there are faster ADCs available with more resolution, this

device is ideal for applications
that do not require a high degree of accuracy

• ADC080X requires up to 100 µs to convert an analog input voltage
into a digital output code.

The ADC080X Analog-to-Digital The ADC080X Analog-to-Digital
Converter

 The pin-out of the ADC0804 analog-to-digital converter.

• To operate the converter, the WR pin is pulsed with CS grounded
to start the conversion process.

• If a time delay is used that allows at least 100 µs of time, there is
no need to test INTR pin.

• Another option is to connect the INTR pin to an interrupt input, so
when the conversion is complete, an interrupt occurs.

The ADC080X Analog-to-Digital The ADC080X Analog-to-Digital
Converter

 The timing diagram for the ADC0804 analog-to-digital converter

• Before ADC0804 can be connected, the two analog inputs must be
understood:
– VIN(+) and VIN(–)

• These differential inputs are summed by the operational amplifier
to produce a signal for the internal analog-to-digital converter.

• These inputs are connected to an internal operational amplifier.

The Analog Input Signal

• ADC0804 requires a clock source to operate.
• It can be an external clock applied to CLK IN pin or can be generated

with an RC circuit.
– permissible range of clock frequencies is

100 KHz - 1460 KHz.
– desirable to use a frequency as close as possible to 1460 KHz so

conversion time is minimized
– here Fc= 1/(1.1 x RC)

• If generated with an RC circuit, CLK IN and CLK R pins are connected
to an RC circuit

Generating the Clock Signal

ADC from inside

• ADC0804 interfaced to an 8086 is illustrated in Figure
• VREF is not attached to anything, which is normal
• Suppose ADC0804 is decoded at I/O port address 40H for the data

and address 42H for INTR.

Connecting the ADC0804 to the Connecting the ADC0804 to the
Microprocessor

• Interrupts are useful when interfacing I/O devices at relatively low
data transfer rates, such as keyboard.

• Interrupt processing allows the processor to execute other software
while the keyboard operator is thinking about what to type next.

• When a key is pressed, the keyboard puts out one pulse that
interrupts the microprocessor.

• Diagram shows how the keyboard interrupt and the printer
interrupt are called during a main program.

The Purpose of Interrupts

• Intel processors include two hardware pins (INTR and NMI) that
request interrupts…

• And one hardware pin (INTA) to acknowledge the interrupt
requested through INTR.

• The processor also has software interrupts INT, INTO, INT 3, and
BOUND.

• Flag bits IF (interrupt flag) and TF (trap flag), are also used with the
interrupt structure and special return instruction IRET
– IRETD in the 80386, 80486, or Pentium

Interrupts

• Interrupt vectors and the vector table are crucial to an
understanding of hardware
and software interrupts.

• The interrupt vector table is located in
the first 1024 bytes of memory at addresses 000000H–0003FFH.
– It contains 256 different four-byte interrupt vectors

• An interrupt vector contains the address (segment and offset) of
the interrupt service procedure.

Interrupt Vectors

The interrupt vector table for the microprocessor

– the first five interrupt vectors are identical
in all Intel processors

– Intel reserves the first 32 interrupt vectors
– the last 224 vectors are user-available
– each is four bytes long in real mode and contains the

starting address of the interrupt service procedure.
– the first two bytes contain the offset address
– the last two contain the segment address

• Type 0
The divide error whenever the result from a division overflows or
an attempt is made to divide by zero.

• Type 1
Single-step or trap occurs after execution of each instruction if the
trap (TF) flag bit is set.

• Type 2
The non-maskable interrupt occurs when a logic 1 is placed on the
NMI input pin to the microprocessor

• non-maskable means—it cannot be disabled

Intel Dedicated Interrupts

• Type 3
A special one-byte instruction (INT 3) that uses this vector to
access its interrupt-service procedure.
– often used to store a breakpoint in a program

for debugging
• Type 4

Overflow is a special vector used with the INTO instruction. The
INTO instruction interrupts the program if an overflow
condition exists.

• As reflected by the overflow flag (OF)

Intel Dedicated Interrupts

• Type 5
The BOUND instruction compares a register with boundaries
stored in the memory.

If the contents of the register are greater than or equal to the first
word in memory and less than or equal to the second word, no
interrupt occurs because the contents of the register are within
bounds.
– if the contents of the register are out of bounds,

a type 5 interrupt ensues

Intel Dedicated Interrupts

These are 5 software instructions for interrupts.
• INT and INT 3 are very similar.
• BOUND and INTO are conditional.
• BOUND has two operands, and compares a register with two words

of memory data.
• INTO checks or tests the overflow flag (O).

– If O = 1, INTO calls the procedure whose
address is stored in interrupt vector type 4

– If O = 0, INTO performs no operation and the
next sequential program instruction executes

• The INT n instruction calls the interrupt service procedure at the
address represented in vector number n.

 BOUND, INTO, INT, INT 3, and IRET

• INT 3 instruction (1-byte) is often used as a breakpoint-interrupt
because it is easy to insert a one-byte instruction into a program.
– breakpoints are often used to debug software

• The IRET instruction is a special return instruction used to return
for both software and hardware interrupts.
– much like a RET, it retrieves the return address from the stack

 BOUND, INTO, INT, INT 3, and IRET

• When the processor completes executing the current instruction, it
determines whether an interrupt is active by checking:
– (1) instruction executions internal e.g., overflow, divide by 0
– (2) single-step
– (3) NMI
– (4) coprocessor segment overrun
– (5) INTR
– (6) INT instructions in the order presented

Operation of a Real Mode Interrupt Operation of a Real Mode Interrupt

• If one or more are present:
1. Flag register contents are pushed on the stack
2. Interrupt (IF) & trap (TF) flags clear, disabling the INTR pin and
trap or single-step feature
3. Contents of the code segment register (CS) are pushed onto the
stack
4. Contents of the instruction pointer (IP) are pushed onto the
stack
5. Interrupt vector contents are fetched and placed into IP and CS
so the next instruction executes at the interrupt service procedure
addressed by the vector

Operation of a Real Mode Interrupt Operation of a Real Mode Interrupt

Interrupt Processing Flow-Chart

IRET
Restores original
Interrupt status

• In protected mode, interrupts have the same assignments as real
mode.
– the interrupt vector table is different

• In place of interrupt vectors, protected mode uses a set of 256
interrupt descriptors stored in an interrupt descriptor table (IDT).
– the table is 256  8 (2K) bytes long
– each descriptor contains eight bytes

• The interrupt descriptor table is located at any memory location in
the system by the interrupt descriptor table address register (IDTR).

Operation of a Protected Mode Operation of a Protected Mode
Interrupt

• Each IDT entry contains the address of the interrupt service
procedure
– in the form of a segment selector and a 32-bit offset address
– also contains the P bit (present) and DPL bits

to describe the privilege level of the interrupt

Operation of a Protected Mode Operation of a Protected Mode
Interrupt

• The interrupt flag (IF) and the trap flag (TF) are both cleared after
the contents of the flag register are stacked during an interrupt.

• the contents of the flag register and the location of IF and TF are
shown here
– when IF is set, it allows the INTR pin to cause

an interrupt
– when IF is cleared, it prevents the INTR pin

from causing an interrupt
– when TF = 1, it causes a trap interrupt (type 1)

to occur after each instruction executes
– Trap is often called a single-step
– when TF = 0, normal program execution occurs

Interrupt Flag Bits

• The two processor hardware interrupt inputs:
– non-maskable interrupt (NMI)
– interrupt request (INTR)

• When NMI input is activated, a type 2
interrupt occurs
– because NMI is internally decoded

• The non-maskable interrupt (NMI) is an edge-triggered input that
requests an interrupt on the positive edge (0-to-1 transition).

• The NMI input is often used for parity errors and other major faults,
such as power failures.

Hardware Interrupts

• The INTR input must be externally decoded to select a vector.
• Any interrupt vector can be chosen for the INTR pin, but we usually

use an interrupt type number between 20H and FFH.
• Intel has reserved interrupts 00H - 1FH for internal and future

expansion.
• INTA is also an interrupt pin on the processor.

– it is an output used in response to INTR input
to apply a vector type number to the data bus connections D7–
D0

Hardware Interrupts

• The interrupt request input (INTR) is level-sensitive, which means
that it must be held at a logic 1 level until it is recognized.
– INTR is set by an external event and cleared inside the interrupt

service procedure
• INTR is automatically disabled once accepted.

– re-enabled by IRET at the end of the interrupt service procedure
• 80386–Core2 use IRETD in protected mode.

Hardware Interrupts

• The processor responds to INTR by pulsing INTA output in
anticipation of receiving an interrupt vector type number on data
bus connections D7–D0.

• Two INTA pulses generated by the system insert the vector type
number on the data bus.

Hardware Interrupts

 A simple method for generating interrupt vector type number FFH in response to
INTR.

• In response to INTR, the
processor outputs the INTA to
enable a 74ALS244 three-state
octal buffer.

• The octal buffer applies the
interrupt vector type number to
the data bus in response.

• The vector type number is
easily changed with DIP
switches shown in this
illustration.

 Using a Three-State Buffer for INTA

• INTR input can be converted to an edge-triggered input by using a
D-type flip-flop.

• Clock input becomes an edge-triggered interrupt request input, and
the clear input is used to clear the request when the INTA signal is
output by the microprocessor.

 Making INTR Input Edge-Triggered

• This covers three common methods of expanding the interrupt
structure of the processor.

1. Using 74LS244
2. Using “daisy-chain” method
3. Using 8259 Interrupt controller

 Expanding The Interrupt Structure

• The modification shown in Figure allows the circuit to
accommodate up to seven additional interrupt inputs.

• The only hardware change is the addition of an eight-input NAND
gate, which provides the INTR signal to the microprocessor when
any of the IR inputs becomes active.

Using the 74ALS244 to Expand Using the 74ALS244 to Expand
Interrupts

• If any of the IR inputs becomes logic 0, the output of the NAND gate
goes to logic 1 and requests an interrupt through the INTR input.

• The interrupt vector that is fetched during the pulse depends on
which interrupt request line becomes active.
– Table shows the interrupt vectors used by a single interrupt

request input
• If two or more interrupt requests are active, a new interrupt vector

is generated. On that vector, we place the ISR of that interrupt
which has higher priority.

Using the 74ALS244 to Expand Using the 74ALS244 to Expand
Interrupts

• Expansion by a daisy-chained interrupt is in many ways better than
using the 74ALS244.
– because it requires only one interrupt vector

• Figure shows a two 82C55 peripheral interfaces with their four INTR
outputs daisy-chained and connected to the single INTR input of
the processor.

• If any interrupt output becomes logic 1, so does INTR input, causing
an interrupt.

Daisy-Chained Interrupt

 Two 82C55 connected to the INTR outputs (daisy-chained)

– any INTR output from the two
82C55s will cause the INTR pin
on the processor to go high,
requesting an interrupt

– The task of locating which INTR
output became active is up to
the interrupt service procedure,
which must poll the 82C55s to
determine which output caused
the interrupt

• 8259A (PIC) adds eight vectored priority encoded interrupts to the
microprocessor.

• Expandable, without additional hardware,
to accept up to 64 interrupt requests.
– requires a master 8259A & eight 8259A slaves

• A pair of these controllers still resides and is programmed in the
latest chip sets from Intel and other manufacturers.

8259A Programmable Interrupt 8259A Programmable Interrupt
Controller

– 8259A is easy to connect
to the microprocessor

– all of its pins are direct
connections except the
CS pin, which must be
decoded, and the WR pin,
which must have an I/O bank
write pulse

General Description of the 8259A

• IR0–IR7
• Interrupt request inputs are used to request an interrupt and to

connect to a slave in a system with multiple 8259As.
• INTR
• The interrupt output connects to the INTR pin on the processor

from the master and is connected to a master IR pin on a slave.
• INTA
• Interrupt acknowledge is an input that connects to the INTA signal

on the system.
In a system with a master and slaves, only the master INTA signal is
connected.

8259A Pin-Outs

• CAS0–CAS2
• The cascade lines are used as outputs from the master to the slaves

for cascading multiple 8259As in a system.
• SP/EN
• Slave program/enable buffer is a dual-function pin.
• when the 8259A is in buffered mode, this

output controls the data bus transceivers
in a large microprocessor-based system

• when the 8259A is not in the buffered mode,
this pin programs the device as a master (1)
or a slave (0)

8259A Pin-Outs

8259A internal Block Diagram

• The 8259A is decoded at
I/O ports 0400H and
0401H by the PLD.

• The 8259A requires four
wait states for it to
function properly with a
16 MHz processor
– more for some other

versions of the Intel
microprocessor family

Connecting a Single 8259A

Cascading Multiple 8259As

• This circuit uses vectors 08H–0FH & I/O ports 0300H & 0302H for
U1, the master

• Uses vectors 70H–77H & I/O ports 0304H & 0306H for U2, the slave
• Data bus buffers illustrate the use of the SP/EN pin on 8259A
• These buffers are used only in very large systems with many devices

on their data bus connections

Cascading Multiple 8259As

